

Sampling and Aliasing

through visualizations

Acknowledgement: Multiple figures in this presentation are borrowed from the book "The Fast Fourier Transform and its Applications", by E. Oran Brigham. These figures are used here only for educational purpose.

A Sampling Story

A Sampling Story

y₁(t), y₂(t), y₃(t)

$$f_1 = 4 \text{ Hz}, f_2 = 40 \text{ Hz}, f_3 = 400 \text{ Hz}$$

 $y_1(t), y_2(t), y_3(t)$

 $y(t) = y_1(t) + y_2(t) + y_3(t)$

Assuming, T denotes the sampling period and n the sample index, we have:

• Hardware parameter: $f_s = 15$ Hz, that makes, $T = 1/f_s$

In hardware, data is stored as, y(nT) where T is fixed by us in the hardware

In hardware, data is stored as, y(nT) where T is fixed by us in the hardware

$y_{hat}(t)$ obtained from y(nT) via sinc interpolation

Hardware parameter: $f_s = 15$ Hz, that makes, $T = 1/f_s$

- Did it reconstruct y(t)? 1.
- 2. If no, why?

- A. Did it reconstruct $y_1(t)$ or $y_2(t)$ or $y_3(t)$? Explain. B. What is this phenomenon called?
- C. How to avoid it?

time-domain

-domain

Perfect

reconstruction

• f_s= 20 Hz

For perfect

reconstruction:

obey Nyquist

rate

 $f_s > 2 f_{max}$

A Sampling Story

Moral of the story:

- Nature is continuous.
- Acquire domain knowledge.
- Check the sampling rate.

Value of intensity as a function of time on the camera pixel

https://allsignalprocessing.com/2017/04/03/aliasing-movies-levitating-helicopters/

Value of intensity as a function of time on the camera pixel

The period of this signal corresponds to the rotor speed.

The camera samples this signal at a particular frame rate.

Summary

- Visualized sampling and interpolation
- Aliasing as folding of the spectrum
 - Results in corruption of the spectrum and hence of the reconstructed/interpolated signal
- Ways to avoid aliasing
 - Sample at higher and higher frequency
 - How do you decide? Physics? Experiments? Domain knowledge can help.
 - Use anti-aliasing filter
 - Don't capture the full spectrum but what whatever is captured is not corrupted
- Aliasing in real world examples, video, images, sound and more